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Section 1, Background and Definitions As for back as 1821,

in the Cours d'Analyze of the tcole Polytechnique, Augustin Cauchy

published a proof of the following remarkable result. If any row,

together with its matching column, is deleted from a real

symmetric matrix, then the eigenvalues of the new matrix interlace

the eigenvalues of the old one. In the presence of more

information, much more can be said about the interlacing of

eigenvalues and the relationship between the spacing and the

corresponding eigenvectors.

An example of such results can be found in a 1972 paper by G.

H. Golub (21 which discusses aspects of the Lanczos algorithm.

Golub, seeking bounds for eigenvalues, constructs a special rank

one update H to an n x n symmetric, tridiagonal matrix T n
n

Letting T be the leading principal (k+l) x (k+l) submatrix of H,

Golub shows each interval determined by the eigenvalues of i

contains an eigenvalue of T . Our Theorem 1 extends this by
n

replacing H with T itself.N

In order to pursue these lines of investigation, some

notational =onventions will prove helpful. Let A denote the

leading principal k x k submatrix of a real symmetric matrix A =
n

A. The ordered eigenvalues of A are denoted by

A(k) Wo)
I 2

(Ik)For each k we assume we have k orthonormal eigenvectors z i

associated with A W (where of course we are using the usual inner

product on n"). When necessary, the jth entry of z k is denoted

by z) (J). Frequently, we shall be concerned only with the

magnitude of the last entry z(k) (k) and, for simplicity, we shall

denote this by the last letter of the Greek alphabet



S(k)

' z - Iz (k)I

Denote by pk (z) - det(xZ - A ) the characteristic polynomial of A

and let p(z) - p.(r).

Section 2 We now consider properties of the whole triangular

set X (k))

A1)

(2) (2)
1 2

(3) (3) (3)
1 2 3

(4) (4) (4) (4)A A A A
1 2 3 4

By Cauchy's Theorem, we know A(k S X(k- I A , as indica4ed
I I 1.1

by the spacing in the table. The first question likely to arise

after looking at this table is:
Does L (' , ] -contain an eigenvalue of A ?

1 2 4

An affirmative answer does not follow from Cauchy's theorem, and,

in fact, the answer is no in general. However, the answer is yes

when A is tridiagonal. Furthermore, the open interval (A (2)

f•2)ifi isa uneud
2 ) must contain an eigenvalue of A if it is an unreduced

2 4

tridiagonal matrix. (Recall, a tridiagonal matrix

aI bI
bI Is

Tk k-a bb 1
bk~t ak]

is called unreduced if all the b's are nonzero.) What is more

this little known result can be proved by elementary means

eminently suitable for introductory courses in linear algebra. We

give brief, introductory proofs now, because we shall establish a

more general result by other means later. Here is the general
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(k) 1~k)
statement, which is simplified by letting Ax . -m and A.1 =

Theorem 1 Let T be an n x n real symmetric unreduced

tridiagonal matrix with Tk its leading principal k x k submatrix.

Then every interval (A(k), A ) contains a distinct eigenvalue of

T, I = 0, 1, ... , h.

Note Theorem 1 is true even if T is reduced provided that we

reilace the open intervals by closed intervals. This follows by

using just a little care after breaking T up into tridiagonal

blocks at each zero bI. When n - k + 1 this is just Cauchy's

Theorem; we shall need later the fact that Cauchy's Theorem yields

strict inequalities for unreduced tridiagonal matrices.

Note Suppose A is a n x n symmetric matrix and T is ak

partial tridiagonalization of A (obtained perhaps by the Lanczos

algorithm). Then each interval determined by the eigenvalues of

Tk contains an eigenvalue of A, since if we complete the

tridiagonalization we obtain a T similar to A.

Before proving Theorem 1 we consider the special case n = k +

2 given in Theorem 2, below. For this case, the proof is very

apparent, it illustrates the general case, and more detailed

information is obtained that not only has other interesting

implications but also hints at the results to follow in the next

section. In the statement of Theorem 2 we use the convention

(a, b) - (a) if a - b. Also, from before, a is the lowest

diagonal entry of Tk7, and it must lie in some interval (A k) ' ](k

Theorem 2 Let Tk+2 be unreduced and assume ak*2 lies in

Wk) 1k)t 1.1]°

(a) If AX) s 2 a s AX k1) then each of the k + 2

intervals



Mot Wk) Mot() .AL (k0- a OtM) , (Ik)

1 k .2 11 1+1
.M#1~) W~) . kt

k k ( +l

contains one of the k + 2 eigenvalues of T ,.a.

(b) If A s a s . then (a) holds when the middle

1k) k) )two intervals are replaced by (A1 ' - ), (ak2 , AX I).

These relationships are illustrated in Figure 1.

Figure 1. A possible graph of y - pk.2 ()

Proof of Theorem 2 Assume that a 5 X k*V'1) (and the proof1-i

in the case a a A is similar. By Cauchy's Interlace
k.2 1.1

Theorem, we know pk? has zeros in the ntervals (-a, A ' ) and
1

.(k-1)

Ak*l , w). We shall prove one of the three remaining cases and

leave the others as on exercise.

1k) (k.1)Pick an arbitrary J, 1 s j < I and consider (xA A )"

The usual expansion of det (Xl - Tk*) along its bottom row gives

the well-known recurrence relationship
2

(1) p,.2 (z) - (Z - a )p (z) - p(2 )
-2k+2 k+1 k.1,P

We know pk (,Xk) - 0 and pk, (A k+1) - 0. Using interlacing and

the factorizations

P , (j ) o r( - X ' " ' . .(Z k ")j O r - A ( 'j , M . (z - A W ),

p k .,( z M (Z - A M ot)) '' (X A k+1) )J O r - X M ot)) .. 'Z. O r X O 't•,., )
we so* sgn p (AkM) () (Ak) () k-JPkZ)-(i-A 1 ) -- (z-1)' )(n - )gnp*~(zAj -(

k o k#1

Since A W < A W 2akA ) W a < O. Putting this

J I aM+2' J k#2

altogether we have

.k~) C- A1,, )**(- )(x-A)]._.)- _)-

$r, I a(A Mot) -sgn[O - b2. P (A -T
.2 (k)*I 1kk I k *

s gn (A M) sgn[( k) a ndP( ) _ 0] _ -(-1)j* M (-1) k'

Sinenmk <nnnu a 2 ,A k)- 0. Puttimummn ng thisn nm m•mnn nnnnu

jq k- I k# o

altogther e hav



Thus the polynomial p.. 2 has a zero in "(k)' A*1 )
I j.t )

Before proving Theorem 1, there are two comments to make.

First, Theorem 2 shows that though A (k.2) is in the interval
Jot

(X k*), ;(k.I A ))j , it will tend to be closer to whichever endpoint

is further from ak*2 ; how close will be discussed further in

Section 3. Second, Theorem 2 shows that each interval (Ax,

Ak) contains a unique eigenvalue of T except for the interval
J , k .2

that contains a k*2 From this, if we knew bounds of all the a , j

Sk + 2, then we would know that intervals ( A W) ,.(,)) outside

those bounds still contained unique eigenvalues of T.

Proof of Theorem 1. Let n a k + 3. Let T be the trailing

principal (n-m+l) x (n-m+l) submatrix of T, which is given by

a b a
b a

a b
n-1 n-i

b anl-1 n

and let 0 be its characteristic polynomial. Then

Tk b
k

bk a b

T = b°, a k*.2 bk

bk+2 k3 bk 1 3

b11hi*3 •
ST,

Now expand p(z) dec (xl - T) along the (k + 2)nd row to obtain

(after a little algebra)

(X k2()P- (X) 0 Pk.a*,.3 (r) pk(zp(x) - p,.a(x)p C),. b2

The proof now proceeds in a manner very similar to the proof of

Theorem 2. In each interval (A (k), there is at least one
. , je
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zero of p in either (X('", .(k.)) or (AX(k.), A)), depending on
j J. o J*t j.1

the relative position of ((), X ) to the zeros of and
j J ) te k-

p1 3. In this, you must use the fact that the zeros of p 2 and

k

0 interlace each other, also (again by Cauchy's Interlace

Theorem). The details are left as an exercise.

Section 3 If all that we wanted to show was that each

closed interval (A , ] contains a distinct eigenvalue of A,

then the tridiagonal assumption in Theorem 1 is not necessary, as

we shall show in Section 4. However it is necessary for our next

result, which concerns what we call crowded interlacing, i. e.,

when the next eigenvalue along is very close to one of the eigen-

values between which it is interlaced,
in{iAk) - AWI, IAc( -. A k1) << iA _ Ak) W

I I 141 ) It+1

In the context of the Lanczos algorithm it is important to

understand when an eigenvalue of Tk° is almost on top of an

eigenvalue of T . This phenomenon is controlled by the rwumbers

W introduced earlier. This is surprising but not without

precedent. In studies of the inverse eigenvalue problem it was

discovered independently by most researchers that an unreduced

tridiagonal Tk is completely determined (to within ± signs) by the
ienvalues and the "weights () There are only 2n -

1 free parameters here, since r wI - 1. Among physicists theIn

parameters (A) , • ) are called action-angle variables.
I In

The following result implies, among other things, that

2 (a) W (n) (n-t) (n) < 2 (A (n) (n)wj. 2  -A 1 ) < A -A A < w,(A -A
In 21 In ft I

Consequently the smaller is w the closer are A (n-I) and A, (n)

Theorem 3 If T is an unreduced n x n tridiagonal matrix and
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1 s k n n, then

(k-1) Wk)
A -A

(k) (k)A. -A?
k I

A (k) -X (k-I) x k-t) A k)

. t - _I I < c2

AWk) - 1k) A(k) -A (k) 1k
I I k I

(k) (k-i)

k k-I

(k) (k)
k I

A (k-1) - Ak)
I -A1 1

k - k. ' I " 1
2 1

1k) A Ik-i) X k-1) - k)
< t 1-1 t--

1k k k k) , I * 1, ){
A -A A(k) - (A

1 1-1 1 1 1

1k) 1k-1)
k k-I
k1k) - k) ' I - k

k k-I

Proof It is known that the tridiagonal Tk can be recon-

structed from the 2k - 1 values (X W) k (-1 ) TheI I1 t }ITh

expression for wtk is remarkably simple. As before, let p =

det(ZI - Tk ) be the characteristic polynomial of Tk. Then

W )2 M _-1 (A(k) ) p, ( .A k)

1k - Pk-I 1

A proof of this may be found in £4, p. 129]. It remains only to

reorganize the expression above as a product of quotients:
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k-1 (k-I) (k)

j ' k•) ' kl = 1=SA - A

I - I (k) - (k-t) k -t I x k-1) - W~k
2 1 j" TT i I- i=zlti I k) (k) 1 1 k

j~ IA 1

9A - A -kA - A
14)-1 1~k) _ 1~k- )1k

IT W J i k
Jul A t A -- i A -Aj . I' k

k j

Since T is unreduced, Cauchy's Theorem yields A < (k
k1k

Ak1 ) J - 1, , k - 1, so each factor in the above products is

positive -nd less than one. To obtain the second inequality in

the theorem, simply discard all factors in each rT term except i:r

the smallest one.

In order to obtain the first inequality in the theorem, the

products given above must be rearranged as follows:

k-I (k-I) Xk) M-1) A I k)(k-t) XAk) 1Akt -A A~k k~-t.A~ 1'k-I -A 1 =_1_____k () k~)

fl i I M 1 -1 TT _____I_

j 1 Xl W AA I j1M.2 A -k) k) ( W W)+ I •t k I

I (k) ( Ok-1) 1 -2 A(k) - (k-I) ,k) - A(k)

TT I M - I 1  t i-

j A I AA k)k) AAk) X A k)) - A1k) I
I J I I I 1 1 )

(-kx=' •-1 W€= M€ ' -1 Wc • k -t I t-t-D W• •
TT I M j iITT

X= J e t A L I J = l I ! +I k t

kI-t A, (k) A k-t) kkI) -k - 2 (k) AI k t) AW M-1)S kA , J .IT k J k k--
k-I (k) k-Ikk) A) ¶ . (k-a () - (kI)) k k

A - A W AT W k) A -A

S k k Jk J*1

Cauchy's Theorem shows that every quotient in the four

8 n• l



products in parentheses shown above exceeds one. Deleting them

yields the first inequality, as claimed.

Next we return to full symmetric matrices.

Section 4 We now extend the results of Theorem 1 beyond the

tridiagonal case. The eigenvalues of the k x k matrix A define

k + 1 intervals (-co, A ](k), (A k), A (' k , ... , [" ('), -), and we

want to know when every principal supermatrix of Ak contains at

least one eigenvalue in each of these intervals. We do not demand

that these intervals be distinct. Recall our earlier convention

(k) ( k)
that A0 -0 and A ik#

Theorem 4 Let A - C k j be a symmetric partition of A .

. (k) (k)If rank(C) - 1, then each interval CA W, A ]. i 1 0, 1, ...,

contains at least one eigenvalue of A .
n

Proof Let C -wt, w a Rn-, a Rk. The case of the

external intervals follows from Cauchy's Interlace Theorem, so

pick an I - 1, ... , k - 1.

If A(k) - A W, find a unit eigenvector z of A associated
1 1 k

with A and satisfying vtz - 0. Now let x - [ 0 ] and it is

trivial to verify that x is an eigenvector of A corresponding to

(k)A .

Suppose A(k) , A.(k) Let z-(k) cos*+ z(k) sin V, where

will be determined later, let x [ and let i

( Ak) + A(',)/2. Then
r (.)(k) " (k) i

"A(k) ) zk) cos 0 + (AX) - ) Z sin i.,
(A - •I)x - (l) c-n

VVt (Z k) Cos 10 + z k) sin •Lt (1-(I

Now take any * such that vt (zk) cos * + z ()4- sin 0) = 0. For

9



such a •,

0 (A - iIZ)z 2  (X) - 7)2 co820 + (06W - r) 2sin21#

-([ -•W -xk) 2.-

2

It is a standard result (see [3, Th. 4-5-1]) that if xii - 1 and

lAx - TxV1 - 6, then there is an eigenvalue of A in C7 - 6, 7 + 6].

If we apply this to the above where 6 - WA X A) /2, we easily

(k)
see that there is an eigenvalue of A in (I - 5, z + 6] IX

A(k)

X.,] and we are done.

In general it can be shown that if rank(C) - r, then each

union of r abutting subintervals defined by the A(k)'s holds at
fttleast one eigenvalue of A.n As soon as r exceeds k, the result

becomes vacuous.

It is worth pointing out that Theorems 1 and 3 can both be

obtained as special cases of Lehmann's optimal intervals.

Lehmann's results [3] were published in the 1960's in German and

are complicated by the use of an additional parameter. He assumes

that A and C are known, but U is not, and then finds, for each C

a R, the smallest interval centered at C that contains exactly j

eigenvalues of A . The answer turns out to be that th.- radius '

of the smallest interval is the Jth smallest singular value of[A?, - Cz k ]* It is not hard to see that if C has rank one and C

- + X W+)/2, then a 1.X _ ) as

expected.

Section 5 An alternative approach to Lehmann's work was

taken by W. Kahan. He proved the following refined interlace

theorem. See (4. pp. 194-7].
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Assume A - A has the form
H C t O0

A - C V Zt
0 Z Wt

where H in m x m and V is k x k (and 0 is the zero matrix). In

applications, H and C are known but probably V, Z, and V are not.

Being ignorant of V we replace it with a k x k X which we are free

to choose and define an auxiliary matrix M - M(X) H C X "

Denote the eigenvalues of M by at - M(X) and assume u "s

o*k

Theorem 5 (Kahai.) Assume A, M, and X are given as above

where X is any k x k matrix satisfying

V - X is invertible

Then for each index j - 1, ... , m, the interval ,i Fa

contains a different eigenvalue A, of A. In addition, for each

index I - 1, ... , k, there is a d'fferent eigenvalue XI of A

outside of the open interval (w, rWv).

The only blemish in this result is the unverifiable

assumption that V - X is invertible. Our final contribution is to

remove this hypothesis by looking carefully at the general case

when V - X is singular.

Theorem 6 Kahan's Interlacing Theorem (Theorem 5) remains

true if the hypothesis "V - X is invertible" is removed.

Proof Let A, X, and M be as above, except assume that V - X

is singular. Let N - Null Space (V - X), so that N * M - RN.

Picking orthonormal bases for N and Nl, we can change A and H so

that V - X O [ ] where r is invertible. Thus,

1o



V V V~l v [ v 1t
V2 1 V22 0 Y 0 2oX- X22 %2" X22 + Y

Break up Z-[Z, Z2 ], compatibly. Then for each c > 0, let we

z z-1zYtz + z1 zZt. and obtain
2 2 C I I

H C t 0

V V t t
i t 21V zV

%21 22
0 z I Z 2 V

M Ct 0 M Ct 0

V -C. Vt cI 0 t
C' ,, a 0 + C0 zt

V-vc, Xz0 Y Z

1 2 ¥C

ST + U, T= VCI

Hence if we let Xc [ V 1  2 we can now easily

V - X is invertible so that Kahan's Interlacing Theorem applies

to A, MC, and XC. If we carefully let c -- + 0, then MC -4 M

(although V¥ C-. V) so that the eigenvalues of MC go to the

eigenvalues of M. Hence the conclusion follows, since A has

only a finite number of sigenvalues.
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